Role of cyclic Di-GMP during el tor biotype Vibrio cholerae infection: characterization of the in vivo-induced cyclic Di-GMP phosphodiesterase CdpA.

نویسندگان

  • Rita Tamayo
  • Stefan Schild
  • Jason T Pratt
  • Andrew Camilli
چکیده

In Vibrio cholerae, the second messenger cyclic di-GMP (c-di-GMP) positively regulates biofilm formation and negatively regulates virulence and is proposed to play an important role in the transition from persistence in the environment to survival in the host. Herein we describe a characterization of the infection-induced gene cdpA, which encodes both GGDEF and EAL domains, which are known to mediate diguanylate cyclase and c-di-GMP phosphodiesterase (PDE) activities, respectively. CdpA is shown to possess PDE activity, and this activity is regulated by its inactive degenerate GGDEF domain. CdpA inhibits biofilm formation but has no effect on colonization of the infant mouse small intestine. Consistent with these observations, cdpA is expressed during in vitro growth in a biofilm but is not expressed in vivo until the late stage of infection, after colonization has occurred. To test for a role of c-di-GMP in the early stages of infection, we artificially increased c-di-GMP and observed reduced colonization. This was attributed to a significant reduction in toxT transcription during infection. Cumulatively, these results support a model of the V. cholerae life cycle in which c-di-GMP must be down-regulated early after entering the small intestine and maintained at a low level to allow virulence gene expression, colonization, and motility at appropriate stages of infection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct sensory pathways in Vibrio cholerae El Tor and classical biotypes modulate cyclic dimeric GMP levels to control biofilm formation.

Quorum sensing (QS), or cell-cell communication in bacteria, is achieved through the production and subsequent response to the accumulation of extracellular signal molecules called autoinducers (AIs). To identify AI-regulated target genes in Vibrio cholerae El Tor (V. cholerae(El)), the strain responsible for the current cholera pandemic, luciferase expression was assayed in an AI(-) strain car...

متن کامل

Exploring environmental control of cyclic di-GMP signaling in Vibrio cholerae by using the ex vivo lysate cyclic di-GMP assay (TELCA).

Vibrio cholerae senses its environment, including the surrounding bacterial community, using both the second messenger cyclic di-GMP (c-di-GMP) and quorum sensing (QS) to regulate biofilm formation and other bacterial behaviors. Cyclic di-GMP is synthesized by diguanylate cyclase (DGC) enzymes and degraded by phosphodiesterase (PDE) enzymes. V. cholerae encodes a complex network of 61 enzymes p...

متن کامل

Transcriptome and phenotypic responses of Vibrio cholerae to increased cyclic di-GMP level.

Vibrio cholerae, the causative agent of cholera, is a facultative human pathogen with intestinal and aquatic life cycles. The capacity of V. cholerae to recognize and respond to fluctuating parameters in its environment is critical to its survival. In many microorganisms, the second messenger, 3',5'-cyclic diguanylic acid (c-di-GMP), is believed to be important for integrating environmental sti...

متن کامل

PhoB regulates motility, biofilms, and cyclic di-GMP in Vibrio cholerae.

Signaling through the second messenger cyclic di-GMP (c-di-GMP) is central to the life cycle of Vibrio cholerae. However, relatively little is known about the signaling mechanism, including the specific external stimuli that regulate c-di-GMP concentration. Here, we show that the phosphate responsive regulator PhoB regulates an operon, acgAB, which encodes c-di-GMP metabolic enzymes. We show th...

متن کامل

The RNA Domain Vc1 Regulates Downstream Gene Expression in Response to Cyclic Diguanylate in Vibrio cholerae

In many bacterial species, including the aquatic bacterium and human pathogen Vibrio cholerae, the second messenger cyclic diguanylate (c-di-GMP) modulates processes such as biofilm formation, motility, and virulence factor production. By interacting with various effectors, c-di-GMP regulates gene expression or protein function. One type of c-di-GMP receptor is the class I riboswitch, represent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Infection and immunity

دوره 76 4  شماره 

صفحات  -

تاریخ انتشار 2008